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Abstract: In this paper, we introduce the formalism and terminology of multiregime dynamics 
for both theoretical modeling and data analysis. Coding is proposed as the appropriate tool 
for the analysis of such special type of dynamics, focusing upon switches between suitably 
defined dynamical regimes. Individually taken these switches often represent abrupt alterations 
in the qualitative features of the dynamic process. At times, however, they seem to be stringed 
together to show emerging (near) regularities and fluctuations. This opens new vistas upon 
applications to the analysis of the vector time series of socioeconomic models. In empirical 
applications, coding involves transformation of data into a sequence of symbols that is then 
analyzed with information-theoretic tools, so as to extract information about generating 
processes.
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Introduction

The original motivation for the modeling 
approach presented hereafter arose in one of 
the discoveries in recent economic literature, 
a motivation which is now also emerging 
in other social sciences: even very simple 
dynamic models can display a surprising 
variety of behaviors. To capture this common 
feature, it has become standard to allow for 
e.g. multiple and/or indeterminate equilibria 
(dense sets), endogenous cycles and irregular 
fluctuations, and the like. In many instances, 
this modeling innovation can really be 
imputed to an effort to introduce formally a 
notion (that of regime), which already belongs 
to the jargon of the more empirically oriented 
scientists. In fact, nearly always dynamics 
is assumed to be governed by a single, 
universal system of differential or difference 
equations, as this is a useful simplification. 
However, behavior may be governed by 
different dynamic laws depending upon the 
values of the state variables, and therefore 
their uniqueness cannot be assumed but 
explicitly proved. Then changes in regime are 
qualitative changes in the dynamics brought 
about by changes in the underlying rules. 
Such changes can be single events, of the 
type associated with the idea of structural 
changes, or they can be coordinated in a 
temporal sequence, following more or less 
regular patterns. This general occurrence is 
what we call multiregime dynamics (MRD). 
MRD reproduces the complex dynamics 
of the socioeconomic models, solving the 
unsolved problem of marrying structural 
change with adjustment dynamics and 
can be conceived as a dynamical system 
over a set of models, and such set as kind 
of menu of qualitative behaviors available 
to a dynamical process. Formalizing such 
dynamics requires introducing the notion 
of a state space over models, which is 
naturally discrete. Now we can focus upon 
regime switches as discontinuous changes 
or discrete jumps. It is to isolate this kind of 
dynamics that regimes are assigned distinct 
symbols from an adequate alphabet, and our 
description goes symbolic defining a coded 
dynamics. The use of such technique is the 
fundamental difference of our approach from 
the conventional one where state variables 
are real numbers.

Compared with the original dynamics, 
coded dynamics deliberately overlooks 

certain regularities amenable to treatment by 
the usual methods, to focus upon qualitative 
features that, given the short compass of 
our data, will easily tend to be attributed to 
random components while on the contrary 
they may exhibit recurring (hence, in 
principle endogenously driven) patterns. 
As the coding procedure is mechanical and 
does not imply any priory assumption about 
the underlying processes, its by-product 
is an indirect test of which model might 
be appropriate to a given data set. Coding 
dynamics appears to be the appropriate tool 
to analyze models with multiple regimes, 
and it can easily be adapted to a space 
where states are discrete to begin with, as 
it happens in analyzing the dynamics of 
alternative social outcomes as in repeated 
games, and other theoretical and empirical 
social research.

We show some of the uses of coded 
dynamics to represent regime dynamics 
for socioeconomic models admitting 
multiple regimes, and discuss its relation 
with mathematical symbolic dynamics. In 
empirical applications as we see them, the 
coding techniques of the type we employ, 
information--theoretic statistical tools and 
computational experiments play a key role: 
they provide heuristics tools and are tools to 
explore data information. The difficulty of 
clearly grounding the explanation of the large 
body of empirical evidence in established 
theoretical approaches, has introduced 
further items in the theoretical agenda. Thus, 
for instance, multi-regime dynamics can be 
appreciated as a way to tackle the difficult 
issue of separating deterministic from 
disturbance elements in typical economic 
time series. If we do not resort to ad hoc 
assumptions on the generating mechanism, 
irregularity (often associated with non-
stationarity) is in principle expected to be 
the general rule rather than a temporary, 
casual deviation from some fixed equilibrium 
value. Generally it is very difficult to identify 
rules constraining the set of variables 
representing a dynamical process to simple 
reciprocal relations, which would reduce the 
mathematical size of the problem to a smaller 
space of variables as is in the cointegration 
approach. In MRD, irregularity, i.e. lack of 
well defined attractors and similar features 
are taken to be as typical, inherent features of 
an economy’s evolution. They are attributed, 
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fundamentally, to the coexistence of various 
inseparable layers of dynamics as well as to 
the dynamic interdependence between the 
various components of an economy. Thus, 
in comparing systems over time, and in 
analyzing a system’s history, the issue becomes 
how to measure or index irregularity.

The paper is organized as follows. 
Section 2 introduces the notions of dynamic 
regime and MRD. There, we review and 
compare different strategies to construct 
partitions into regimes and motivate our own 
choice and implied representation of regime 
dynamics via coded dynamics. In section 
3, we formalize the notions introduced 
in section 2. In section 4 we present two 
pedagogical or teach-yourself models to 
illustrate the use of coded dynamics and its 
overlapping with the mathematical proof 
technique called symbolic dynamics. We also 
introduce entropy as a measure of irregularity 
or complexity in regime dynamics. In section 
5 statistical methods arising in a natural way 
in the context of data analysis and processing 
of multiregime phenomena, are reviewed. 
These methods (collectively spanning so 
called Symbolic Time Series Analysis) are the 
statistical counterpart of coded dynamics. 
Finally, section 6 shows how such tools can 
be used to address the inverse problem of 
reconstructing a multiregime dynamical 
model from measured time series data.

Regimes and multiregime dynamics

The term regime has a relatively long 
history in economics (and probably in 
other social sciences as well). It has been 
used implicitly or explicitly extensively 
in a variety of fields, with reference not 
only to methodological aspects but also 
to analytical and economic policy, and 
even political issues.1 Still, the term is 
generally not uniquely or well defined and 
it stands for different things to the various 
authors who have been using it in different 
contexts. In macroeconomic modelling and 
related econometric literature it is however 
commonly employed to identify an attractor, 
in other words an isolated equilibrium state 
(often a trend) towards which the system 
shows some local when not global stability. 
(see Durlauf and Quah (1999))

We introduce our notion of regime first 
in an intuitive way. It is easier to define it 

indirectly, by defining a regime switch. This 
refers to an event whereby a qualitative 
change in the functional forms of a given 
model has to be considered, as a result of 
the examination of the behaviour of the 
represented system. In fact, system behavior 
predicted by any posited model always 
implies the definition of a regime, and 
sometimes more than one, this being the set 
of rules governing it depending upon where 
it is travelling in its state space. Calling on 
economic intuition, an economic regime is 
therefore a set of rules and/or institutions, 
which are assumed to govern the economy 
at a given time and therefore to account for 
the qualitative features of its observed or 
observable behaviors. Regime, therefore, 
is often taken to stand for such a set of 
rules/institutions; sometimes, however, it is 
taken to indicate certain resulting qualitative 
behaviors, and often it is confusedly used to 
indicate either or both of them. The implied 
hypothesis is that model and predicted 
dynamics are uniquely corresponding to one 
another, which however cannot be taken for 
granted, to that it is better as we do, to keep 
the two notions distinct, and remain firmly 
with the notion of regime as a model with its 
own state space, capable thus of displaying 
a whole set of behaviours some which may 
be exhibited also by other regimes, though 
over other domains.

The interesting case is, of course, when 
there are two or more of such regimes, which 
may be as mutually excluding alternatives, or 
else as potential components of a dynamical 
menu of non-exclusive alternatives. The 
issue, then, becomes how such regimes get 
stringed together into a path or trajectory. 
The history of a given system as a specific 
realization of the set of alternatives in the 
menu may now display qualitative change. 
In the conventional approach the possibility 
of a system to select a specific regime is not 
excluded, of course; beyond the identification 
of regime with attractor, which is not here, 
what is excluded is the possibility that 
our approach permits, of visiting different 
regimes at different times, and for different 
lengths of time. The system may go from 
one to another through structural change in 
a variety of fashions.

Changes in regime are basically of the 
nature of discontinuous jumps or switches 
in the space of models spanned by the 

1	 These different notions of regime are 
critically reviewed in Bimonte et als. 
(2001).
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dynamical menu. Often, they can be modeled 
as the result of the system reaching and 
overshooting certain critical or threshold 
values in the key state values and/or in its 
parameters. Thus, to define a regime we need 
to identify its domain, or the state space or 
set over which a given set of mathematical 
rules apply, and in particular its boarder or 
frontiers where those rules or local model 
ceases to be the governing rules. In other 
words, when a system admits the possibility 
of occupying alternative regimes, its state 
space has to be partitioned, to identify the 
distinct regimes’ domains. Hence, next to 
the problem of model selection, the criterion 
for partition becomes crucial. In general, 
we may distinguish between endogenous 
and exogenous partitions, depending upon 
whether they are induced by some pre-
selected property (and therefore vary with 
the dynamic process under scrutiny) or 
are theory-induced (hence, they are pre-
empirical or predetermined). An endogenous 
partition is one that can be constructed 
from the equations of the model, without 
attaching any particular interpretation to 
the necessary partition. This is chosen on 
the basis of mathematical convenience and 
it either exists or not. For example, for one 
dimensional systems usually we distinguish 
regimes by the monotone branch of the 
map that represents the model. Endogenous 
partitions are often used by mathematicians 
as a tool to obtain proofs for properties of 
a dynamical system. As we show latter in 
this paper, the representative example of an 
endogenous partition is a Markov partition. 
In principle, exogenous partitions descend 
from an at least intuitive understanding 
of the underlying dynamics that can be 
conceived as a sequence of phases or regimes. 
These partitions are generally induced by 
economic reasoning alone and may or may 
not be convenient from the mathematical 
point of view. For any particular process, 
one introduces a taxonomy of regimes for the 
problem at hand, this being determined by 
the theoretical beliefs or by the adoption of 
one or more theoretical frameworks. Then, 
exogenous partitions do not depend upon 
any hypotheses as to the data generating 
(deterministic and/or stochastic) model. 
Examples of exogenous partitions are those 
defined by a threshold value given some 
economic interpretation. For example, 

economists often talk of high and low 
inflation and then, we can define a regime of 
high inflation if the variable i is bigger than 
a particular threshold i

0
 (for example, 10% 

of inflation) and regime of low inflation if i 
≤ i

0
. The multiregime environment used in 

Brida, Puchet and Punzo (2003) makes use 
of the two dimensional Framework Space 
(introduced in Boehm and Punzo (1992)) 
which is constructed as the domain space of 
growth theories. Its partition into six regime 
sub-domains corresponds to different 
classes of existing economic theories and it 
is therefore defined exogenously.

Hereafter, we focus upon the possibility 
of a system displaying overtime dynamic 
behaviors that are qualitatively different. 
One image taken from the phase portrait of 
one such system is therefore a path taking 
across trajectories in principle belonging 
to different regimes. Therefore, each path 
can be seen as constructed piecewise, by 
stringing together pieces of trajectories 
predicted by different models. Each model 
would be a kind of local representation of 
an overall dynamics, thus accounting for 
only part of the history of the process. Put 
differently, an actual or simulated history 
is interpreted as one specific realization of 
a collection of already available regimes, a 
time sequence of part-trajectories through 
regimes with their own timing and duration 
in some agreed clock. Any change of regime 
naturally signals some form of structural 
change, the sequential ordering of visited 
regimes and other parameters of the time 
dimension giving information relevant to 
understand which form.

Defining regimes and multiregime 
dynamics

In this section, we translate the intuitive 
notion of regime introduced earlier into 
a formal definition which identifies each 
regime with its own specific and technically 
local mathematical model. Such definition 
leads to the idea that a regime change 
takes place whenever a system moves in 
its state space from one region to another 
where a qualitatively distinct (in terms of 
functional form and/or key parameter values) 
dynamic law applies. Structural change is the 
discontinuity in dynamics observed while 
crossing the border between them, when the 
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whole model describing system behaviour 
abruptly is altered. This we will see can be 
a singular non reversible event, or else be 
coordinated and reversible.

Definition If D is a subset of Rn, {D
1
, D

2
, … D

n
} 

a partition of D and ƒ
i
 : D

i
 → D (i = 1, 2, …, 

n) is a family of functions, then each pair R
i
 = 

(D
i
, ƒ

i
) (i = 1, 2, …, n) is a regime. Conversely, 

given a dynamical system (D, ƒ) and a partition 
{D

1
, D

2
, …, D

n
} of the domain D, a regime is a 

pai (D
i
, ƒ

i
) (i = 1, 2, …, n) where ƒ

i
 = ƒ|

Di
 is the 

restriction of the function ƒ to the se D
i
.2

This definition reflects the fact that 
different regimes are described as regions 
of a state space in which the state variables 
exhibit characteristic behaviors. The global 
dynamics of a multiregime model is 
therefore represented by a dynamical 
system (D, ƒ), while dynamics within 
region D

i
 is represented by the difference 

equation x
t+1

 = ƒ
i
(x

t
) x

t
 ∈ D

i
, ƒ

i
 being the 

restriction of ƒ to the domain D
i
. Of course, 

when n = 1, we are in a standard one-regime 
situation handled implicitly by the majority 
of models. However, an interesting partition 
slices the state space into (at least) two non 
empty sets D

i
 and it has as many distinct 

restrictions. As ƒ
i 
(D

i
) is not necessarily a 

subset of D
i
, paths need not be confined or 

get trapped into the slice of the state space 
where they originate; on the contrary, they 
generally may traverse from one regime 
to another. The simultaneous presence of 
multiple regimes provides alternatives: they 
are available to so to say pick and choose 
to assemble or construct a system´s history. 
One such history can moreover be quite 
rich, as it results from the cross product 
of a twofold dynamics, one within a given 
regime and one across regimes, running at 
the same time though with different clocks. 
The former represents the behavior within 
any specific regime, the latter captures and 
formalizes the concept of regime switch. 
Their mixing can produce any kind of 
dynamic behavior, and in particular may at 
least partially account for non-stochastically 
determined irregularity. In this setting, 
conventional dynamics corresponds to the 
former and MRD focuses upon dynamics 
across regimes to study structural changes, 
how they may be concatenated, and to 
analyze various degrees of irregularity as 
they emerge from actual histories. MRD 
is, in other words, an explanatory non 

stochastic framework for large irregular and 
fluctuating behaviours of socioeconomic 
systems. Structural changes can be dealt 
with one at a time with conventional 
nonlinear or linear-stochastic methods. 
MRD seeks an endogenous explanation for 
their tendency to repeat themselves and 
for their often irregular concatenation. The 
key to our definition is that the partition 
of the state space into a finite number of 
regime domains goes together with multiple 
dynamic models in a specific way. We can 
think of each of the regimes R

i
 = (D

i
, ƒ

i
) i = 1, 

2, …, n as the mathematical representation 
of a whole class of models  rather than of an 
individual one.

Dynamics across regimes is defined 
on a finite set of regimes (hence it has a 
discrete domain) while dynamics within 
regime i is defined on the state space 
domain D

i
 as usual. That MRD be defined 

over a space of dynamical models (instead 
of space of real-valued coordinates), goes 
beyond other similar definitions already 
available in the literature3. States which 
are of this type only need a finite number 
of symbols to be represented. To represent 
such MRD it is natural to resort to the idea 
of symbolically coding them. The coding 
procedure translates a classical trajectory in 
a given state space into a trajectory in the 
space of regimes, whatever the dimension 
k of the original space. Hence, some of the 
limits that are encountered in the analysis of 
multidimensional systems can in principle 
be overcome. This representation of a 
system’s dynamics is obtained by associating 
a symbol with a chosen regime and then 
coding observed dynamics into a string 
of symbols. The arithmetical precision of 
conventional analysis gets lost. On the other 
hand, coding dynamics may be a way to 
disentangle complicated, irregular patterns, 
identify discontinuous jumps that represent 
structural changes from the smoother 
displacements within a given regime and, 
possibly, to check some form of regularity is 
hiding behind them.

Formally, if we define the index of 
regimes by the function

p : D → A = {1, 2,…, n} such that p(x) = i if 
and only if x ∈ D

i
 (i = 1,…, n)

then, the symbolic sequence

2	 As usual in Symbolic Dynamics theory 
- see e.g. Alligood et als. (1997) p. 
125-126- in this paper we will abuse 
terminology in calling a partition of 
the state space D, a collection of sub-
sets of D, which have pairwise disjoint 
interiors and whose union is D. For a 
well defined dynamic rule, at a point x 
such that x ∈ D

i
 ∩ D

j
, ƒ

i
(x) = ƒ

j
(x) must 

hold, of course.

3	 Although similar in spirit, our multi-
regime and Day’s multi-phase dynamics 
(see Day (1994, 2000)) have different 
origins and motivations, this account-
ing also for their distinct evolution.
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gives the representation of the system as a 
sequence of regimes. This representation 
is called coded dynamics and is related (and 
partly overlaps) with the mathematical 
branch called symbolic dynamics.4 It 
implies a re-coding of paths of conventional 
dynamics, which are described in real 
number coordinates as the infinite sequence 
x, ƒ(x), ƒ2(x),…, fn(x),… through an initial 
state x, into a symbolic string s

0
s

1
s

2
,…s

n
,… 

of symbols from a chosen alphabet A = 
{1,2,…,n). If we start with ƒ(x) then the 
symbolic sequence will be p (ƒ(x)) p (ƒ2(x)) 
p (ƒ3(x))…. So, the dynamics on the space of 
symbol sequences just consists of shifting to 
the right: s

0
s

1
s

2
…s

n
,… ↦ s

1
s

2
…s

n
,… . Then, 

with n regimes, regime dynamics is defined in 
a subset of the set ∑

n
 of all symbol sequences 

and the dynamics is given by the shift map σ 
: ∑

n
 → ∑

n
 that shifts all coordinates one side 

to the right. We often think of an element 
s

0
s

1
s

2
,…s

n
,… of the full shift as a time series, 

with s
0
 representing the actual regime and s

1
, 

s
2
, …, s

n
, … its future. The action of the shift 

map is like a tick of the clock, moving us one 
step into the future. The shift map is trivial 
so all the structure of the regime dynamics 
is given by the space of symbolic sequences 
generated by the map ƒ. The complexity of 
the regime dynamics of a particular model is 
measured by the “size” of the space of feasible 
symbolic trajectories. We can use the tools of 
Information Theory to study the set of feasible 
symbolic sequences and in some cases we 
can write out an abstract automata which 
generates the symbol sequences produced 
the regime dynamics. If the original partition 
is well chosen, every point in the map’s state 
space has a unique string of symbols, and 
vice versa, and shifting a string to the right 
is equivalent to iterating the map. When 
this is the situation one can find Markov 
partitions where there is an almost one-to-one 
correspondence between continuous states 
and the symbol sequences they generate. In 
these important cases, we are in the field of 
symbolic dynamics and studying the symbolic 
sequences is completely equivalent to 
studying the original (pointwise) dynamics. 
Markov partitions are not easily obtained in 
practice and unfortunately, it is well known 
that it is possible, that the state space can 
be so partitioned, only for a comparatively 
small class of special cases. On the other 
hand, there are no maps where it is known 

that it is definitely impossible to construct 
a generating partition. But the coding 
procedure of transforming the trajectory 
x, ƒ(x), ƒ2(x) …, ƒn(x), … into a symbolic 
sequence can also be done when the partition 
is not Markov. In this case, we say that we 
have a coded dynamics. The proximity 
between coded and symbolic dynamics often 
permits the use of well-established symbolic 
dynamics techniques, as we will illustrate 
in the next section. This proximity shows 
up in particular when a mathematically 
more appropriate partition can be used that 
is finer than the regime partition induced 
by economic reasoning alone. To generate 
the former, whenever possible, we have to 
resort to a cross product of economic and 
the mathematical criteria. In fact, while 
our chosen definition of regime implies 
a partition of the system’s state space, the 
latter may be introduced without paying any 
attention to its economic significance, and the 
two need not be consistent to one another. 
Still, a regime classification on the basis of 
some specific economic motivation can be a 
reasonable starting point to try to construct a 
mathematically useful construction. Broadly 
speaking, symbolic dynamic techniques can 
be effectively used whenever economic-
theory induced partitions are included in 
those demanded by the former. This happens 
whenever they satisfy the requirement of 
being e.g. a generating partition. That there 
are cases where this is possible, is a good 
reason for further investigation.

In the next section, we illustrate our 
approach, with examples that have only a 
pedagogical meaning. In these examples 
we can give a detailed representation of 
regime dynamics and we can compute the 
complexity of the models, measured by its 
entropy.

Some pedagogical examples

The set of dynamic equations describing 
implicitly the law ƒ

i
 governing over an 

associated domain D
i
 in the system state 

space D, are normally derived as the reduced 
form of a structural model, inclusive of 
definitions and other fundamental relations. 
Often such reduced forms have provided 
one-dimensional dynamical systems. In the 
literature on complex and chaotic economics, 
which has blossomed in the 80s early 90s, 

4	 In Brida, Puchet and Punzo (2003) 
there is an intuitive introduction to the 
formalism and terminology of coded 
dynamics in multi-regime models. For 
an introduction to symbolic dynamics, 
see Alligood et als. (1997).
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versions of the unimodal map has been 
popular, as giving in the discrete formulation 
a wealth of complicated behaviors with 
very minimal mathematical troubles, but 
often little economic justification, though, 
so that they remained theoretical exercises 
and counterexamples to well- established 
results.5 In this vein, though, they may 
make good pedagogical devices, given 
the simplicity of their setting vis-à-vis the 
complicated outcomes they may yield. 
However, the earliest historical example to 
illustrate our notion of regime dynamics 
comes from the nonlinear cycle theory. In 
fact, in such a theory that goes back to the 
codification by Schumpeter, an economic 
cycle is broken down into phases separated 
by down- and up-turns, or switching 
points representing the sudden inversion 
of expansion or contraction. Therefore, one 
can conceive of the classical approach to 
the explanation of cycles, (in particular of 
business cycles, as defined by Schumpeter), 
as the ancestors of MRD. The difference 
being substantial though: not only because 
cycle theory was essentially confined to one-
dimensional dynamics, while MRD is not, 
but more fundamentally because the regimes 
were taken to be concatenated in a regular 
sequence, and for this reason they were 
aptly denominated phases of the cycle6. The 
class of unimodal one-dimensional systems 
in discrete time is quite large, of course. In 
this context its members are useful whenever 
they permit the identification of at least two, 
if not more, non overlapping domains into 
which to split their one-dimensional state 
space, an open interval in R, with their 
associated local laws. We introduce the tent 
map as one representative of such class of 
unimodal maps, in order to illustrate in this 
setting the type of exercise of going from the 
standard representation in the real number 
system to the symbolic representation, the 
advantages of doing so when the outcome 
can be very complex and varied. this is 
well illustrated indeed by an unrestricted 
tent map.

Let D be normalized to I = [0, 1] and let 
ƒ : I → I be the function defined by:

and we consider the dynamical system (ƒ, [0, 
1]). This function is usually referred as the tent 

map and is increasing in [0, ] and decreasing 
in [ , 1]. Partitioning one dimensional maps 
at the critical points generally work fine. 
This give us a mathematical criterion for 
the division into regimes: one regime is I

0
 

= [0, , 1] and the other I
1
 = [ , 1]. These 

regimes will be represented by symbols 0 
and 1 respectively. The sets I

0
 and I

1
 have 

disjoint interiors and their intersection is 
the point x = . One such partition into 
domains, which is determined functionally 
on the basis of properties of the map, is, of 
course, an example of endogenous partition 
as defined above; it is also a Markov partition 
as it produces a conjugacy from the shift map 
σ on ∑

2
 to ƒ on I. Through such partition, 

and the properties of the tent map itself, in 
fact, one can show that a new (symbolic) 
representation of the tent map dynamical 
system by the shift map is obtained where 
all fundamental topological properties 
of the original system are preserved. Fig. 
1 illustrates a simple graphical way of 
representing coded dynamics for the tent 
map by using the technique of finite directed 
graphs. Transition graph G is constructed 
using a covering rule: for example, an edge 
from vertex i to vertex j is drawn if and only 
if the image ƒ(I

i
) of I

i
 contains the interval 

I
j
. Coded dynamics is then described by all 

possible walks through the labeled directed 
graph G. And in fact, if we have been able 
to construct a covering partition P of the 
domain of the corresponding dynamical 
system, its associated coded dynamics can 
be effectively represented by a graph.

Figure 1: transition graph G representing the 
coded dynamics of the tent map with the parti-
tion P = {I

0
, I

1
}.

As a variation of the tent map, let ƒ be 
the unimodal function defined by

where the partition P = {I
0
, I

1
} is now I

0
 = 

[0, 1/3] and I
1
 = [1/3, 1], with the graph of 

ƒ no longer symmetric with respect to the 
inversion point and thus the two branches no 
longer mirror-images of one another7. In this 
case it can be shown that the representation 
of the corresponding coded dynamics is 
given by the transition graph of figure 2.

5	 See, for example, Benhabib and Day 
(1980, 1981, 1982), Boldrin and 
Montrucchio (1986), Day (1982, 
1983), Day and Shafer (1985) and 
Hahn (1992) for some economic 
models with a final dynamic unimodal 
equation. See also Sordi (1992) for 
a review on chaotic unidimensional 
models in macroeconomics.

6	 Moreover, the symmetry between 
expansion and contraction phases hid 
the fact that their basic difference was 
of a qualitative nature, and prevented 
their real understanding (see Goodwin, 
(1951)).
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Figure 2: transition graph representing the coded 
dynamics of the modification of the tent map with 
the partition P = {I

0
, I

1
}.

It is not hard to see that the set of 
symbolic trajectories is exactly the set of 
binary sequences that cannot contain strings 
with two or more  in sequence, while 
the previous version admits any sort of 
infinite binary sequences, restricting the shift 
map to this new partition, therefore, fully 
describes the possibilities of the two-regime 
dynamics it can generate, by excluding one 
(sometimes important) dynamic possibility. 
One can see it as a way to fine-tune a posited 
canonical model, the tent map in this case, 
to fit certain data, and it is a good teaching 
example for a general approach to model 
recovery or identification (in an extension 
of the econometric language) to which we 
will come back later in the paper. This is the 
promising way ahead for coded analysis as 
applied to empirical socioeconomic data.

In the previous examples, we have used 
a Markov partition of the system domain, 
i.e., a partition yielding an almost one-to-
one relationship between trajectories and 
symbolic sequences. If we use a partition that 
is not Markov, the description in the coded 
dynamics possibly it cannot be represented 
via transition graphs.8 But as long as we 
can make use of one such partition, life 
is relatively easier, and we can still study 
the fundamental properties of the original 
model in the relatively simpler setting of 
coded dynamics. One of those key properties 
is topological entropy, one of the premier 
numerical invariants of a dynamical system 
serving many a purpose. From the dynamic 
viewpoint, entropy measures complexity and 
randomness; from the information-theory 
viewpoint, on the other hand, it is a measure 
of information capacity or ability to transmit 
messages. In fact, the number # B

n
(X) of n 

blocks appearing on points of a space X of 
symbolic sequences gives us an idea of the 
complexity of X (the greater such a number, 
the more complicated the space). Instead of 
using the individual numbers # B

n
(X) for n 

= 1, 2, …, we can summarize their collective 
behavior by computing their growth rate 
as n varies. As can be readily seen, # B

n
(X) 

grows approximately at the rate 2cn, with 
the constant c as the growth rate. Then, for 
large n such value is approximated by (1/n) 
log

2
 (# B

n
(X)). This motivates the definition 

of entropy, to recall:

Definition Let X be a space of symbolic 
sequences. The (topological) entropy of X is 
defined by

With reference to the previous 
pedagogical examples, note that if X is a 
space of sequences defined in a set of R 
symbols, then # B

n
(X) ≤ Rn

 for all n and this 
implies that h(X) ≤ log

2
 R. If X is the space 

of all symbolic sequences of R symbols, we 
have that # B

n
(X) ≤ # Rn, so it is h(X) ≤ log

2
 

R. Then, the two-regime dynamics of the 
tent map has entropy log

2
2 = 1.

 
On the other 

hand, for the modified tent map, we know 
that the set of feasible coded sequences is a 
set of binary sequences that does not contain 
the string 00. In this case it can be shown 
that the entropy of the regime dynamics is 

9. But life is hardly this easy, as 
Markov (endogenous) partitions, have no 
reason to coincide with exogenous partitions 
that are introduced on the basis of intuition 
or criteria for testing existing theories. The 
two obey two distinct necessities, and each 
of them places restrictions and demands 
upon the sought result the other does not 
care for (and, in general, covering partitions 
are seen as too stringent to applied sciences). 
Whenever, we have to make do without 
them, we can still either dive into data and 
resort to statistical methods (next section) 
and/or construct computational experiments 
(see the last section).

Data analysis of symbolic time 
series

Symbolic Time Series Analysis (STSA) is 
a statistical approach that arises in a natural 
way in the context of data analysis and 
processing of multiregime phenomena. We 
start with a given set of measurements which 
in some applications is a set of vectors of time 
series data representing the evolution of a 
dynamical process in its state space D. If the 
latter is endowed with a suitable (endogenous 
or exogenous) partition so that a menu 
of dynamical regimes can be identified, 

7	 As was in business cycle theory, see 
Goodwin (1951) again.

8	 See Bolt et als. (2001) for a detailed 
study of non-generating partitions in 
one dimensional dynamics.

9	�������������������������������������       See Brida and Punzo (2003) and refer-
ences therein for a detailed exposition 
of representation of symbolic dynamics 
via directed graphs and for the tech-
niques to compute the entropy.
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coding them synthesizes the evolution of the 
observed system into a symbolic sequence, 
each symbol being a dated regime state. 
However, this coding approach and the 
related techniques can be easily extended 
to cope with other socioeconomic research 
settings where a finite number of states, at 
times identified by qualitative rather than 
quantitative characteristics, can be identified 
and therefore can be tagged accordingly. 
Thus, assume a sequence of data {x

1
, x

2
, …, 

x
t
, …, x

T
} made up of vectors x

t
 ∈ D ⊂ Rq, 

for t = 1, 2, …, T. Then Rq is the state space 
with the coordinates of the process under 
observations, subset D is the set of admissible 
values for such coordinates, a given dated 
vector x

t
 is the system state at time t in our 

choice of coordinate axes and, finally, q 
will be the number of state variables of the 
given dynamical system on D. Suppose that 
D is endowed with a partition of regimes. 
Then, we transform the sequence of data 
{x

1
, x

2
, …, x

t
, …, x

T
} into the sequence of 

symbols  s
1
s

2
…s

t
…s

T
, where s

t
 = s if and 

only if x
t
 belongs to the regime labeled by 

s10
. Once encoded, regime dynamics of the 

multiregime system can be described:

i)	 by the pattern of symbols within 
the associated string: i.e., which 
symbols appear and which do not 
(in other words, which regimes are 
visited and which not; and by their 
connectedness, i.e., how regions are 
visited in sequence, one after the 
other);

ii)	 by the normalized time spent in each 
region, or length of subsequences 
in the string exhibiting the same 
symbol;

iii)	by the various cycles of different 
lengths (or periods) where a sub-set of 
symbols repeats itself in a structured 
sequence;

iv)	finally, by the eventual emergence 
of particular patterns of symbols 
(structural cycles as asymptotic 
behaviors)  and,  perhaps,  the 
disappearance of other cycles 
(transients).

Taking a population of strings, one can 
compute their statistics: e.g.

i)	 the frequency of visiting certain 
regimes;

ii)	 the frequency of paths connecting 
selected regimes, one-way paths and/
or cycles (or closed loops, as against 
open loops);

iii)	the average time spent in a given 
regime, path, cycle and the like.

STSA addresses the issue of how extract 
and describe time patterns of complex 
dynamical processes and recover information 
about the class of generating models. 
Compared with more standard analytical 
approaches, the novelty is in that this set of 
method does not rest upon any hypotheses 
as to the data generating (deterministic 
and/or stochastic) model. STSA accepts the 
paradigm of irregularity, where irregularity is 
the generic, and regularity the rare property 
of time series reflecting a dynamical process 
endowed with sufficient complexity (as 
social and economics processes redeemed 
to be). Under such paradigm, we have to 
look at most for near-regularities in the raw 
data sets, or at higher levels of dynamics of 
regime or coded dynamics.

The next step in identification of 
temporal patterns is the extraction of short 
symbol sequences of chosen length, from the 
overall sequence of symbols s

1
s

2
…s

t
…s

T
 

coding the whole history of a system in 
terms of regimes, and we do this by grouping 
symbols together while preserving their 
temporal order. Such ordered subsequences 
are called words in the symbolic dynamics 
literature. They stand to us for paths (to 
adhere to dynamic terminology) or patterns 
to emphasize their qualitative significance 
looking at them from the regime point 
of view, while at times they will be called 
episodes to stress their occasional emergence 
from within an apparently unstructured 
symbolic string or erratic history. One may 
give a ready interpretation to some of such 
patterns, at least: e.g., any length-k sequence 
repeating the same symbol represents a 
sort of temporary equilibrium of the same 
duration but in a regime sense, thus allowing 
the system to wander around within a 
given regime domain (therefore, one such 
temporary equilibrium may be consistent 
with a broad variety of dynamics within the 
regime’s domain). On the other hand, we 
may have fluctuations across regimes, some 
of them may show some periodicity, as they 
are in a conventional business or economic 

10	This process of transformation of data 
into a symbolic sequence is called sym-
bolization in the STSA literature and 
can be done in several ways. See Pic-
cardi (2004), Hirata et als. (2004), Daw 
et als. (2003) and Bolt et als. (2001) for 
a discussion of symbolization methods 
and the relevance of selecting a good 
partition. In Hirata et als. (2004) some 
methods to approximate generating 
partitions from data are presented.
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cycles, but most often such periodicity does 
not show up, and is being dominated by the 
emergence of partially structured patterns, 
where, e.g., regimes follow for sometime a 
known sequence. It is clear that whenever we 
have point equilibria and in particular (local 
or global) attractors, closed orbits and limit 
cycles of the classical theory, they turn up to 
be special cases of our MRD, where a whole 
regime domain or a sequence of visited 
domains are collapsed into single member 
points. As we will see, the advantage of our 
coding technique however is in that, while 
comprising those as special cases, it also 
permits to handle a whole variety of irregular 
behaviour and often still to find some order 
(in addition or in substitution to invoking 
unexplained stochastic shocks) at the same 
time as not having to place restrictions on 
the size of the data sets (where the regular 
behaviours of mathematical dynamics are 
deemed to be quite rare). Both cases are 
typical in the applied social sciences, and 
otherwise addressed with a variety of ad hoc 
methods. To extract information encoded in 
the strings so constructed, we can do many 
things, provided the strings are long enough 
(in terms of time observations or history 
length) and/or large enough (as measured 
by the number of parallel observation 
of similar systems at the same time, or 
histories of equal length). Either way, we 
may aim at, e.g., constructing a symbol tree. 
This is a graphical representation of the 
symbol statistics in a given coded history 
as a function of the length of patterns in 
what has been called the available dynamic 
menu. We compute the relative frequency 
of occurrence of all symbol sequences of 
length k in a system’s symbolic history and, 
varying the length k ≤ 1, represent them as 
a tree, one branch for each value of length k. 
Hence, the first level shows the probabilities 
of occurrence of the individual symbols or 
regimes (as patterns of unitary length), the 
second the probabilities of occurrence of 
paths with two (different or equal) symbols, 
and so on so forth. The symbol tree is a 
compact information summary of the regime 
dynamics under observation. Looking back 
at the two graphs in the previous section, 
one sees that the tree is assigning probability 
weights to each directed arrow (level 1) and 
connected arcs (for k ≤ 1). The interpretation 
is interesting. At each node or level of the 

tree, which represents a stage in its history, 
a given system (if probabilities are derived 
from its long history) or an average system 
(if they are derived across histories of various 
systems) has a probability of staying put 
where it is, or else to move, and if it moves, 
this probability refers also to where to move. 
Such probabilities depend upon past history, 
the portfolio or menu of available alternatives 
and finally (when many are simultaneously 
present) upon the other systems have and are 
being doing. The width of this probability 
window is important and reflects the degree 
of freedom left given those conditioning 
elements. It is as if at each stage a system 
were to make a constrained choice about 
its future, the next step, but as this will 
influence to an extent those further down 
the road, it is deciding upon its whole 
future, without knowing how much until it 
has traveled sufficiently further down. Each 
branch of the symbol tree can be represented 
by a histogram. This construction yields a 
direct visual representation of the temporal 
structure in the observed data. The histogram 
depends upon the chose symbol sequence 
length k and generally there are no clear-cut, 
theoretical rules to determine which value 
of k are sufficient for detecting significant 
patterns, if they exist at all. Just like the 
selection of the partition, the selection of 
k can be carried out in several ways and 
optimal choices partly depend on the way 
the partition is chosen. Later, we will have 
to come back to this issue. Symbol sequence 
histograms are compact representations of 
the general dynamics embedded in given 
time series and can be used to compare 
data sets, whether for different systems or 
for different phases in one’s evolution. On 
the basis of computed frequencies, one can 
discriminate histories with distributions 
fairly uniform across the partitioned set 
of regimes from more eschewed ones. In 
particular, given two regime histories with 
the corresponding coded sequences, we can 
evaluate how different they are by means of 
some measure of their distance. The most 
commonly used of such measures is, of 
course, the Euclidean distance from the k-th 
levels of their trees or, in other words, for 
k-long episodes, here re-defined as
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Where A
i
 and B

i
 are the probabilities for 

the possible sequence code or episode i in 
the distinct k-histograms A and B of the two 
systems11. Descriptions of other measures 
of distances are given by Keller et al. (2004) 
and Daw et al. (2003) and in references 
included in these papers. The Euclidean 
distance works like a metric in the space of 
all possible sequences providing a measure of 
the distance between different k-histograms 
in terms of the probability of exhibiting like 
episodes: a greater distance implies that the 
dynamics in the two data set is very different. 
In the next section, the Euclidean distance 
will be used as a target function for fitting 
the parameters of a multiregime model. 
Finally, E

AB
 can also be useful in testing for 

time reversibility, commonly used as an 
indirect test to decide which category of 
models is more appropriate to describe a 
given data set.12

A traditional index for characterizing 
the inner structure of a symbol sequence 
is the Shannon entropy. This information 
measure implicitly gives the average degree of 
organization of a symbol sequence histogram 
at any sequence length k. The Shannon 
entropy H(k) at the k-th level of a tree is based 
on the probability distribution of sequences 
with length k in the symbol sequence

Here p
i
 is the probability of finding the 

i-th sequence of length k, approximated 
by the number of times that the sequence 
indexed by i can be found in the coded  
history divided by the number of all such 
k-long sequences. The base-2 logarithm 
expresses entropy in units of bits, so that 
H(k) is simple to interpret: it measures the 
average number of bits needed to specify 
an arbitrary sequence of length k in a 
symbolic sequence. It is a measure of the 
complexity of the data-generating process, 
or of observational variety: possible paths 
that still are not observed do not enter the 
measure as they get zero probability weight 
and the latter can be interpreted as an index 
of uniformity analogous to the standard 
deviation13. Because of the finite length of the 
data, many possible sequences may appear 
not to be realized which has been shown 
to significantly affect entropy estimates. 
Normalized entropy avoids this problem

where N is the total number of observed 
episodes of length k (i.e. the number 
of sequences of length k with non-zero 
frequency). Clearly H

s
(k) is a modified form 

of H (k) and can be interpreted as the average 
uncertainty per symbol (or sequence). A 
simple calculation shows that, whatever k, 
it is 0 ≤ H

s
 ≤ 1 with H

s
 = 1 if and only if p

1
, 

…, pk, while H
s
 = 0 if and only if p

i
 = 1 for 

some i. In other words, modified entropy is 
zero when observational variety is absent and 
maximal when all the k-histories have the 
same number of observations. In this sense, 
entropy can measure the degree of randomness 
embedded in a given history.

When working with equiprobable 
partitions, entropy may be useful to sort out, 
whether dynamics involved is deterministic 
or stochastic. In fact, each symbol sequence 
of length k must be equiprobable in truly 
random and sufficiently large set of data. In 
this case, H

s
 = 1 while 0 ≤ H

s
 < 1 for non-

random data, lower values of H
s
 implying 

more deterministic structure. A significant 
deviation from equiprobability is evidence of 
time dependence and deterministic structure in 
the data14. With a preassigned partition, the 
value of the normalized entropy is a function 
of k and typically H

s
 decreases monotonically 

as k is increased from 1. Its global minimum 
H* shows the value of k and thus the set of 
symbol-sequences which best distinguishing 
data from a random sequence. Symbol 
sequences that are too short, loose some of 
the important deterministic information 
while symbol sequences that are too long, 
basically reflect noise and data depletion. 
Then, the value of the symbol sequence length 
k that minimizes H

s
 (k) can be seen as an 

optimal choice for the given data and selected 
partition.

Model reconstruction for MRD

One powerful application of STSA is 
to contrast simulated data obtained from 
an assumed model, with real data and 
check whether differences are statistically 
significant. In this section, we consider 
the inverse problem of reconstructing 
a multiregime dynamical model from 
measured time series data. The problem is 

11	It means that we have to take the 
difference between corresponding 
probability entries at the given level of 
the two trees. Like the symbol sequence 
histograms,   is a function of the symbol 
sequence length  .

12	For applications of time reversibility 
in symbolic time series see Daw et al. 
(2003).

13	The average is computed only for 
categories of observations that effec-
tively occur and this is reflected by the 
convention.

14	Characterization of symbolic sequences 
is not restricted to the estimate of 
Shannon entropies. A broad range of 
so-called measures of complexity allows 
a more detailed characterization of the 
structure of symbolic sequences.  See 
Kurths et al. (1996) for a good discu-
sion of complexity measures.



26

R. Bras. Eco. de Emp.  2008; 8(1): 15-28

Multiregime dynamics: modeling and statistical tools

framed as follows: a multiregime dynamical 
model is defined on a state space S that 
depends on a vector of parameters λ and 
there is an associated set of observed data 
to be emulated. That is, S ⊂ Rm is the state 
space, ƒλ : S → S is a parametric dynamical 
rule defining the model and {x

1
, x

2
, …, x

t
, …, 

x
T
} is the observed data set. We assume that 

the model has n distinct dynamical regimes 
associated with domains S

1
, …, S

n
 and we 

are interested in computing the parameter 
vector λ such that the model reproduces 
the observed regime dynamics. That is, we 
want to find the values of vector λ such that 
the model produce by iterations sequences 
that, once symbolized, are close enough to 
the coded string of observed dynamics. In 
other words, our goal is to find a model that 
generates a symbol tree similar according 
to some criterion to the observed one, all 
the way down to some predetermined level 
k. In general, recovering a model from a 
time series is done by varying the model 
parameters such that some error function is 
minimized. The usual methods to fit models 
using minimum squares methods adjust 
their parameters in such a way that the point 
sequences generated by iterating the posited 
model and observed data series appear 
similar. In general, the solution will not well 
reproduce the actual regime dynamics, and 
we will have to adjust the model in order to 
improve it. In order to do this, we will use 
statistics for the observed symbol sequence 
as a target for measuring the goodness of 
fit of the proposed model, because this 
statistics was shown to synthesize regime 
dynamics. This motivates the introduction 
of a new error function to be minimized, 
the function measuring the distance between 
observed and artificial regime dynamics. 
Our error function is the Euclidean distance 
between levels of the trees described earlier. 
This distance depending on the symbol 
sequence length k, we have to select a value 
of k and this can be done by minimizing the 
modified entropy of the observed symbolic 
sequence.

Let us describe the method step by step. 
The first step is to code observed data {x

1
, x

2
, 

…, x
t
, …, x

T
} into the sequence of symbols s

1
, 

s
2
, …, s

t
, …, s

T
, and construct the observed 

symbol tree T
0
. On the other hand, we iterate 

the initial condition x
1
 using the function ƒλ 

to produce an artificial time series {y
1
, y

2
, …, 

y
t
, …, y

T
} where x

1
 = y

1
 and y

t + 1
 = y

t
 for t = 

1, …, T – 1. At this point we can code  {y
1
, 

y
2
, …, y

t
, …, y

T
} into {t

1
, t

2
, …, t

t
, …, t

T
}, 

where t
t
 = i if and only if y

t
 belongs to the 

regime labeled by S
i
. From this sequence, the 

artificial symbol tree T
A
 is constructed.

Next step is to compute the value of  
that minimizes the modified entropy of s

1
, s

2
, 

…, s
t
, …, s

T
. Then, the error function F(λ) is 

the Euclidean distance between the branch 
vectors of T

0
 and T

A
 at level 

The error function F(λ) is defined over 
the parameter space and its plot represents 
the error landscape. Reconstructing the 
generating dynamic model requires to find 
the global minimum in this landscape. 
The complication is that this search is no 
elementary task, as we have no general 
formula for the error function F(λ) and 
we are only able to compute the value of 
F(λ) for given vector λ. Therefore, as one 
do not know where to look for a solution 
or where to start from, most conventional 
search routines will have difficulty too in 
locating the sought solution. In Brida and 
Garrido (2006), it is shown that a genetic 
algorithm as the routine to find the optimal 
values of the parameters appears to perform 
relatively well (even for a chaotic map) and 
is capable of finding a good approximation 
for the global minimum. Tang et als. (1994) 
use the simulated annealing algorithm, 
applying symbolic methods to reconstruct 
the Hénon and Ikeda maps and showing that 
the method is highly robust even in presence 
of observational and dynamical noise.

Summary and conclusions

This paper makes a move towards 
unifying applied and theoretical analyses of 
complex economic dynamics by introducing 
multiregime models and some new tools of 
qualitative analysis of data in the presence of 
multiple regimes. We recall that qualitative 
analysis of data produced by quantitatively 
capable models has an established tradition 
in economic dynamics and partly in the 
theory of dynamical systems, from which 
economists borrowed it. In the latter context 
one resorts to qualitative analysis whenever 
closed forms ensuring explicit solutions 
cannot be obtained, deploying a variety of 
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methods, basically of topological nature, 
which permit a limited understanding of 
some general features.

The dynamical construction based upon 
the notion of regime: i) reproduces state 
indeterminacy typical of complex behaviors; 
ii) it does away with the juxtaposition between 
deterministic and stochastic interpretations 
of such indeterminacy; finally, iii) its value 
added is in handling large coordinate systems. 
Effectively reducing the space dimension or 
the number of variables to be handled, it is 
a means to summarize information for large 
sets. One recognizes that the twofold notion 
of a regime and of a whole set of them as a 
portfolio of qualitatively different dynamical 
behaviors, does play a central role in many 
theoretical settings in economics and the 
social sciences. It often seems more natural 
than the notion of a dynamical state, as is 
defined in classical physics and currently 
used both in the theoretical dynamics and in 
dynamic econometrics. Economic modeling 
is concerned, almost always, with whole 
vectors of values of economically relevant 
coordinate variables that are required in a 
certain sense to conform to some implicit 
consistency requirement. This is the basic 
requirement for the definition of a regime 
over the set of assumed relevant variables. 
We do not see why this common sense 
cannot make room into the formal approach. 
Is it a matter of logics in the high fundaments 
or lack of mathematical tools? We surmise 
it is the fear of venturing deep into a land 
where known and easy methods do not 
help, and fresh ones have to be invented, not 
discovered in a mathematical book.

The theoretical exercise has therefore 
a natural empirical counterpart, often an 
empirical foundation. The connection is 
established via computational experiments. 
The standard computational experiment may 
go as follows. At step one, we introduces 
taxonomy of regimes for the problem 
at hand, this being determined by the 
theoretical beliefs or by the adoption of 
one or more theoretical frameworks. Then, 

actual data is processed in the statistical 
descriptive structure that is coherent with 
the theoretical choice. By analyzing the 
descriptive dynamics, the minimal number 
of partitions in the regimes space that 
is relevant is determined endogenously. 
Finally, one can estimate a model, which is 
subject to the constraint of reproducing the 
coded dynamics as closely as possible and 
use it for computational experiments. Its 
forward output is a qualitative prediction 
of a sequence of regimes, rather than the 
quantitative prediction of asymptotic 
states of standard econometric techniques 
manipulating cross section and/or time 
series data. Qualitative predictions are 
compared to actual histories, to check for 
the goodness of the pre-determined model. 
Such computational heuristics can be 
evaluated against other strategies available 
in the literature, on one side those in the 
Artificial Intelligence tradition that dominate 
the computational approach to economics; 
on the other, with those generated by the 
Real Business Cycles approach. Qualitative 
analysis is re-defined as a set of procedures 
(some of them formal, some merely 
heuristic) for pattern recognition and 
related concepts, rather than being a mere 
alternative to analytical dynamic analysis. 
Our approach focuses, therefore, upon 
identifying recognizable patterns embedded 
into economic time series whose variety 
and irregularity could otherwise be entirely 
attributed to stochastic components. Thus, 
it can be seen as an experiment with a 
deterministic viewpoint where adjustment 
and structural dynamics are not (and 
intentionally cannot be) distinguished from 
one another and therefore are simultaneously 
dealt with. The extension of our approach 
to qualitative analysis to fields in the social 
sciences where this has always played a 
dominant role seems natural.
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